
Congestion phenomena on complex networks

Daniele De Martino,1 Luca Dall’Asta,2 Ginestra Bianconi,2 and Matteo Marsili2
1International School for Advanced Studies SISSA and INFN, via Beirut 2-4, 34014 Trieste, Italy

2The Abdus Salam ICTP, Strada Costiera 11, 34014, Trieste, Italy
�Received 5 August 2008; published 15 January 2009�

We define a minimal model of traffic flows in complex networks in order to study the trade-off between
topological-based and traffic-based routing strategies. The resulting collective behavior is obtained analytically
for an ensemble of uncorrelated networks and summarized in a rich phase diagram presenting second-order as
well as first-order phase transitions between a free-flow phase and a congested phase. We find that traffic
control improves global performance, enlarging the free-flow region in parameter space only in heterogeneous
networks. Traffic control introduces nonlinear effects and, beyond a critical strength, may trigger the appear-
ance of a congested phase in a discontinuous manner. The model also reproduces the crossover in the scaling
of traffic fluctuations empirically observed on the Internet.
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The welfare and security of modern societies increasingly
depend on the correct functioning of large networked infra-
structures, such as the Internet, power grids, and socioeco-
nomic and transportation networks. Such networks often lack
a centralized administration and design, and their functioning
relies on decentralized local heuristics devised in order to
optimize the performances or prevent misfunctioning. How-
ever, local heuristics can hardly provide the best global per-
formances without a deep understanding of the collective
behavior of the system.

Statistical mechanics can help to understand the coopera-
tive phenomena taking place on networks of large infrastruc-
tures �1�, providing means to predict and prevent failures.
Examples range from avalanches of failures in power grids
�2� to credit contagion in networks of firms �3�, the diffusion
of email viruses �4�, traffic jams in urban road networks
�5,6�, or congestion events in the Internet and communica-
tion networks �11–16�.

Our focus here is on congestion phenomena in general.
For the sake of simplicity, we shall, however, first specialize
to the specific case of information networks and then discuss
how our results extend to other cases. In the case of packet-
based communication networks, misfunctioning is usually
due to congestion phenomena that slow down the traffic,
clogging large regions of the network. Congestion has been
observed in wireless networks �7�, in multimedia networks
�8�, and, more importantly, on the Internet �9�. The most
common experimental signature of Internet congestion is the
observation, over some interval of time, of heterogeneous
distributions of the round-trip time of Ping-like signals be-
tween the same source and destination �10�. Apart from these
indirect measures, congestion events are difficult to monitor
and study, so that a clear phenomenological picture is still
missing.

Congestion as a phase transition phenomenon has been
recently studied by several authors �11,12�. Echenique et al.
�13� have found in numerical simulations that the nature of
the congestion transition depends on the type of routing
rules. The effect of routing rules on network performance has
also been addressed in �14� as well as the scaling of traffic
fluctuations �15�.

In this Rapid Communication, we put forward a minimal

model of traffic, based on the idea that packet dynamics
could be described by random walks on a queueing network.
The model preserves all interesting features previously ob-
served in real data and simulations, but it is simple enough to
be studied analytically, shedding light on the mechanisms
responsible for congestion phenomena in networks. We ob-
serve continuous or discontinuous phase transitions depend-
ing on the routing protocol, providing a theoretical insight
into the findings in Ref. �13�. The discontinuous transition is
observed together with a hysteresis of the order parameter
indicating a region of metastable free-flow phase. We find
that while traffic control can make the system more stable
against congestion �especially in highly heterogeneous net-
works�, it can also make a congested state coexist with an
uncongested one, turning the transition discontinuous. Traffic
control is instead deleterious in homogeneous networks. Our
model also offers a simple theoretical explanation for the
scaling of traffic fluctuations observed in Ref. �15�.

Let us consider a network of N nodes, and let v�i� denote
the set of neighbors of node i. We describe traffic dynamics
as a continuous-time stochastic process, in which packets are
generated at each node i with a rate pi. Each node is en-
dowed with a first-in first-out queue. Let ni be the number of
packets in the queue of node i. If ni�0, node i attempts to
transmit packets at a rate ri, which represents the bandwidth,
to one of the neighbors j�v�i�. We assume the following
probabilistic routing protocol. First, the node j is chosen at
random among the neighbors v�i� of i. Second, the fate of the
packet being transmitted depends �a� on whether j is the
destination node for that packet and �b� on the state of con-
gestion of node j. We model both as probabilistic events: �a�
we call � j the probability that node j is the destination of the
packet being sent, meaning that with probability � j the
packet is “absorbed” in the transfer, and �b� we assume that
the transfer is refused by node j with a probability ��nj�,
which is nondecreasing with nj; in this case, the packet does
not leave node i.

Random-walk routing looks quite different from the pro-
cess assumed in other models of traffic in networks �13,16�,
where the packets follow a path from the source to the des-
tination trying to minimize times, taking into account infor-
mation about distance and the local traffic. In shortest path-
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like routing a node i of degree ki is visited with a probability
�ki

�, with ��2, whereas in the random-walk protocol the
probability of visiting node i is proportional to the degree ki.
In both, high-degree nodes are more exposed to events of
congestion, which is why starlike topological structures are
particularly vulnerable to congestion and perform optimally
only at low traffic �16�. Our model can be easily generalized
in order to accommodate for this statistical feature—for ex-
ample, by considering degree-biased random walks, such as
in �17�. Nevertheless, we believe that the general scenario
remains unchanged. The second important ingredient of the
model is the presence of traffic-aware routing protocols. This
mimics congestion avoidance schemes elaborated by com-
puter scientists for the Internet �18�. This class of algorithms
is based on a feedback mechanism that relies on the ex-
change between routers of acknowledgement signals �ACKs�
carrying information on the local level of traffic. When the
round-trip time of ACKs sent in a given direction becomes
too large, the node decreases the rate with which packets are
forwarded in such a direction. As a result, congested nodes
have a lower probability to receive packets, as postulated by
the function � in our model.

In order to study the phase transition from the free-flow
regime to a jammed phase, we consider the order parameter
�11�

� = lim
t→�

N�t + �� − N�t�
�P

, �1�

where N�t�=�ini�t� is the total number of packets in the
system at time t, P=�ipi is the rate of creation of packets,
and � is the observation time. This order parameter repre-
sents the fraction of not adsorbed packets per unit of time in
the asymptotic state. Note that a local order parameter, re-
placing N�t� by ni�t� and P by pi, can be defined in the same
way. Based on this, we define congested a node in which the
average number of packets increases with time ��ṅi��0�, in
the stationary state.

The asymptotic regime of the dynamics can be efficiently
analyzed within a mean-field approximation, in which we
assume that the packet distribution factorizes on the nodes,
P�n1 , . . . ,nN�=	iPi�ni�. The transition rates for ni only de-
pend on the number of packets in the neighboring nodes;
hence, the corresponding set of master equations for Pi�ni�
can be solved by message passing-type algorithms on every
specific network and set of parameters �i, pi, ri, and ��n�
�19�.

Our focus here is on the generic nature of the congestion
phase transition, and its dependence on network topology
and on routing schemes, rather than on specific examples. A
major insight, in this respect, is obtained rephrasing the prob-
lem in terms of ensembles of graphs. We consider uncorre-
lated random graphs with degree distribution P�k�, so that nk
represents now the average queue length of nodes in classes
of degree k. We focus on the simple case �i=�, pi= p, and
ri=1 for all i, and routing protocol ��n�= �̄	�n−n��, where
	�x� indicates the step function. We define qk= P
ni=0 �ki
=k� as the probability that a node of degree k has empty
queue and 
k= �̄P
ni�n� �ki=k� as the probability that a

node of degree k refuses packets. The mean-field transition
rates for nodes with degree k are

wk�n → n + 1� = p + �1 − ���1 − q̄�
k

z
�1 − �̄	�n − n��� ,

wk�n → n − 1� = 	�n��1 − 
̄� , �2�

where z is the average degree, q̄=�kqkP�k�, and 
̄
=�k

k
z 
kP�k�. The average queue length nk follows the rate

equation

ṅk = p + �1 − ���1 − q̄�
k

z
�1 − 
k� − �1 − qk��1 − 
̄� . �3�

Note that summing over k and dividing by p we obtain a
measure of the order parameter ��p�. Since ṅk depends lin-
early on k, high-degree nodes are more likely to be con-
gested. Therefore, in the stationary state for a given p, there
exists a real-valued threshold k* such that all nodes with k
�k* are congested, whereas nodes with degree less than k*

are not congested. Congested nodes �k�k*� have qk=0 and

k= �̄. The probability distribution for the number of packets
in the queue of noncongested nodes with connectivity k
�k� can be extracted by calculating the generating function
Gk�s�=�nPk�nk=n�sn from the detailed balance condition.
This takes the form

Gk�s� = qk1 − �aks�n�

1 − aks
+

�aks�n�

1 − �ak − bk�s
� , �4�

corresponding to a double exponential, where ak= �p+ �1
−�� k

z �1−q�� / �1− 
̄� and bk= �̄��1−�� k
z �1−q�� / �1− 
̄�. From

the normalization Gk�1�=1 and the condition ṅk=0, we get
expressions for qk, 
k and, finally, for q̄, 
̄. The value k� is
self-consistently determined, imposing the condition that
nodes with k=k� have qk� =0, 
k� = �̄, and ṅk� =0, which
translates into the equation

k� =
1 − p − 
̄

�1 − ���1 − �̄��1 − q̄�
. �5�

The above set of closed equations can be solved numeri-
cally for any degree distribution P�k�, and ��p� can be ac-
cordingly computed. The solution is particularly simple for
regular graphs: ki=z, ∀i in the limit n�1. Then the
congestion-free solution with �=0 has qk= q̄=1− p /� and

k= 
̄=0 and it exists for p��. In the congested phase, in-
stead, all nodes have ni→�—i.e., 
̄= �̄ and q̄=0. This solu-
tion has �= ṅ / p=1− �1− �̄�� / p and exists for p� �1− �̄��.
Therefore, in the interval p� ��1− �̄�� ,�� both a congested
and a free phase coexist, as shown in the inset of Fig. 1. The
behavior of � as a function of p exhibits hysteresis: the sys-
tem turns from a free phase to a congested one discontinu-
ously as p increases at p=�, and it reverts back to the free
phase from a congested phase at p= �1− �̄�� as p decreases.
This simple case also shows that traffic control is useless in
homogeneous graphs, as it does not enlarge the stability re-
gion of the free phase, while making a congested phase
stable for p� ��1− �̄�� ,�� �see inset of Fig. 1�. The case of
heterogeneous graphs instead is much richer. Figure 2 com-
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pares ��p� obtained from simulations �points�, for a scale-
free network, with our theoretical prediction �solid line�. The
agreement is very good, and the behavior of the curves re-
produces the scenario observed in �13�. The figure is ob-
tained for �=0.2 and n�=10, but the behavior does not
qualitatively change for different values of these parameters.
The dependence on �̄ brings instead qualitative changes. In-
creasing �̄ from 0.05 to 0.95, the transition becomes discon-
tinuous and pc increases. Hysteresis is still present in case of
discontinuous transition �see inset of Fig. 2�.

We computed the phase diagram �see Fig. 3� in the plane
�p , �̄� for the same uncorrelated scale-free random networks
considered in Fig. 2 for n�→�. The dashed line represents
the continuous phase transition, separating the free-flow re-
gime from congestion. At the point C, the critical line splits
into two branches that define a coexistence region. The upper
solid line represents the discontinuous transition from the
free-phase to the jammed state, whereas the lower indicates
the opposite transition from congestion back to free flow.
The dotted line decreasing from the maximum of the critical
line is an unphysical branch of the analytic solution. Indeed,
in the limit n�→�, if a free-flow phase is stable for a given
value of �̄, this will persist for larger values of �̄ because

traffic control only affects congested nodes: a free stationary
state cannot become congested if we increase �̄. This phe-
nomenology crucially depends on the tail of the degree dis-
tribution. Since kmax depends on the system’s size, we expect
that pc depends on N as well; the inset of Fig. 3 shows that
the critical rate of packet creation goes to zero as pc�N�
�1 /�N for �̄=0, but it goes to a constant for �̄=1 in the
limit of large N. Hence point C separates two regions in �̄
with distinct behavior of finite size effects.

We point out an important general result concerning the
statistics of the number of packets at each node. In the free-
flow stationary state, we generally expect the distribution of
the number of packets to be exponential. Indeed, Eq. �4�,
with ak�1 and neglecting terms of order ak

n*�1, yields
Gk�s��qk / �1−aks�. As a consequence, the average nk and
the variance �k

2 of the number of packets at a node of degree
k in the free-flow stationary state stand in the relation �k

2

=nk�1+nk�. At low traffic levels �nk�1� we have �k
2�nk,

whereas �k
2�nk

2 when the traffic increases �nk1�. Further-
more, since nk increases linearly with k, we expect the first
scaling to hold in low-degree nodes, whereas �k

2�nk
2 in

nodes with large k, which is precisely the behavior reported
in Ref. �15�.

In conclusion, we have proposed a minimal model to
study the emergence of congestion in information networks.
For uncorrelated random graphs, the analysis can be per-
formed analytically at the ensemble level, revealing that the
interplay between the feedback process induced by traffic-
aware routing and the topological structure of the network
�in the tail of the degree distribution� generates a rich phe-
nomenology of phase transitions �19�. Traffic-aware routing
is useful only in heterogeneous networks, where it expands
the region of stability of the congestion-free state. However,
when its effects are strong enough, a congested phase may
arise abruptly, and once it arises, it may persist even under
lower traffic loads. The mechanism triggering the emergence
of congestion is somewhat reminiscent of jamming or boot-
strap percolation, where a node is occupied if the number of
occupied neighbors exceeds a given threshold. Also in these
models, as the threshold increases, the transition turns from
continuous to discontinuous �20�.
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FIG. 1. �Color online� ��p /�� for a homogeneous graph from
theoretical predictions for �=0.25, 0.75. Inset: phase diagram for
the same graph.
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FIG. 2. �Color online� ��p� for an uncorrelated scale-free graph
�P�k��k−3, kmin=3, kmax=110, N=3000�, �=0.2, n*=10, and �̄
=0.05 �below� and �̄=0.95 �above�, from both simulations and the-
oretical predictions. Inset: hysteresis circle for the same graph for
�̄=0.95.
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FIG. 3. �Color online� �� , p� phase diagram for an uncorrelated
scale-free graph �P�k��k−3, kmin=3, kmax=110, N=3000�, �=0.2,
and n�=� from theoretical predictions. The inset shows pc�N� for
�̄=1 �upper line� and �̄=0 �lower line�.
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The work presented here can be extended in several inter-
esting directions: First, the analysis of fluctuation phenom-
ena in the congested phase requires an approach going be-
yond the mean-field approximation. The analogy with
models of urban traffic is also a promising avenue. In the
dual representation of the road network �5�, nodes represent
segments of roads and links denote junctions. A model in
which adaptive drivers on a road network try to avoid con-
gested roads exhibits a similar phenomenology �6�: as the
level of traffic increases, drivers find ways to avoid over-
loaded streets, thus distributing as uniformly as possible the
traffic load. However, at a critical threshold a congestion
phase transition takes place beyond which the system is
plagued by strong traffic fluctuations. Similarly, in the
present model, traffic-aware routing makes the traffic load
uniform in a large part of the network. The occurrence of a
discontinuous phase transition can indeed be traced back to
this homogenizing effect: when traffic control is strong, a
finite fraction of the network can suddenly become con-
gested upon increasing the traffic load �p�. Modeling the
complex adaptive behavior of human users in communica-

tion networks, such as the Internet, is a further challenge.
There, users control the rates of packet production in re-
sponse to network performances and they face the social di-
lemma of maximizing their own communication rates, main-
taining the system far from the congested state �21�. In such
a situation, the presence of a continuous transition may allow
the system to self-organize at the edge of criticality, whereas
a discontinuous transition may have catastrophic conse-
quences. Finally, the possibility to solve the model on a
given network with realistic parameters �19� allows one to
draw the phase diagram of congestion phenomena for a
single instance, be it the Internet map or a city’s road net-
work. This would provide both specific predictions and hints
for the design of systems less vulnerable to congestion phe-
nomena.
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